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ables are the Cartesian components of element lengths. Both an analytical and a numerical implementa-
tion of the formulation are described; each require a description of the connectivity of the tensegrity,
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and the results obtained are compared and contrasted with those available in the literature to verify the
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1. Introduction

In 1947, a young artist named Kenneth Snelson invented and
built a novel framework that he called floating compression. Later,
Fuller (1962) called Snelson’s structure a tensegrity, and since then,
this nomenclature has been dominant in the scientific community.
Tensegrity structures are pin-jointed, reticulated and self-equili-
brated frameworks. A tensegrity is composed of a set of discontinu-
ous compressive elements (called struts) floating within a net of
continuous tensile elements (called cables). The rigidity of a tenseg-
rity is the result of a self-stressed equilibrium between cables and
struts. Tensegrities should be pre-stressed and usually need to have
special geometries to provide self-equilibrated structural systems.
The form-finding process determines a possible pre-stress distribu-
tion and geometry for a tensegrity. Early studies of the form-finding
of tensegrities were performed by Fuller (1962) and Snelson (1965).

The form-finding of tensegrity structures has been widely stud-
ied through various analytical and numerical methods, where, typ-
ically, analytical methods are useful for studying tensegrities with
small numbers of nodes and elements and tensegrities with high
orders of symmetry. Previous analytical studies include: Connelly
and Terrell (1995), who studied the analytical form-finding of
rotationally symmetric tensegrities using the force density
concept; Zhang et al. (2009a,b), who analytically studied the
self-equilibrated states and stability of prismatic tensegrity
structures; and Zhang et al. (2012, 2013) and Zhang and Ohsaki
(2012), who developed unified analytical solutions for the self-
equilibrium and super-stability of truncated regular polyhedral
tensegrity structures. Static and dynamic characterisations of reg-
ular truncated icosahedral and dodecahedral tensegrities were also
presented by Murakami and Nishimura (2001).

Numerical form-finding of tensegrity structures has been
studied extensively using different methods, and some examples
are given here, most of which ultimately employ the force density
formulation first introduced by Schek (1974). Motro (1984)
employed the dynamic relaxation method for the form-finding of
tensegrity structures. Pellegrino (1986) proposed a nonlinear
programming approach to the form-finding problem. The reduced
coordinate method for the form-finding of tensegrity structures
was introduced by Sultan et al. (1999) (see also Sultan, 1999).
Masic et al. (2005) proposed an algebraic method, based on
invariant tensegrity transformations, to solve the form-finding
problem. Finite-element-based form-finding was developed by
Pagitz and Mirats Tur (2009). Zhang et al. (2006) proposed an iter-
ative method for the form-finding of tensegrity structures with
geometrical and force constraints. Estrada et al. (2006) and Tran
and Lee (2010a,b) proposed numerical methods for the form-find-
ing of tensegrity structures which employ iterative eigenvalue and
singular value decompositions of the force density and equilibrium
matrices, with clear parallels with the numerical form-finding
approach presented in Section 5. The adaptive force density
method introduced by Zhang and Ohsaki (2006) also utilised spec-
tral decomposition of force density matrix as a core part of the
form-finding process. As a stochastic approach, Li et al. (2010) used
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Monte Carlo methods to find equilibrium configurations of large-
scale regular and irregular tensegrity structures. Rieffel et al.
(2009) introduced a special evolutionary form-finding method,
Koohestani (2012), Paul et al. (2005) and Xu and Luo (2010) used
genetic algorithms and Chen et al. (2012) used ant colony systems
for the form-finding of tensegrities. Mathematical programming
has also been used in the form-finding and optimisation of tenseg-
rity structures under different constraints, including discontinuity
of struts, compliance, stress and self-weight loads. In this category,
we may refer to the mixed integer programming approach of Ehara
and Kanno (2010) and Kanno (2011, 2012). Recent reviews of the
form-finding and analysis of tensegrities may be found in
Hernàndez Juan and Mirats Tur (2008), Mirats Tur and Hernàndez
Juan (2009), Sultan (2009) and Tibert and Pellegrino (2003).

In this paper, we introduce a combined form of the equilibrium
and geometrical compatibility equations for tensegrity structures.
By considering the connectivity of a tensegrity as a directed graph,
geometrical compatibility equations are effectively generated by
its cycle basis. The interrelation between the current formulation
and the force density formulation is established, and analytical and
numerical form-finding methods are proposed. Six examples are
studied using our analytical and numerical methods, and the results
obtained are compared with those documented in the literature.
2. Equilibrium equations

In this section we present the equilibrium equations for a
3-dimensional tensegrity structure (the restriction to 2-dimen-
sions is straightforward). We will first describe a conventional
formulation where the geometry is fixed and the primary variables
are force density in the members, briefly mention the force density
formulation where the force density is fixed and the positions
of nodes are the primary variables, and then we will present a
novel formulation where the primary variables are Cartesian
components of element lengths.

Consider a typical node shown in Fig. 1. The equilibrium (for
instance in the x-direction) can be written as

f x
i ¼

X
r2I

f x
ir ¼

X
r2I

firðxi � xrÞ
Lir

¼ px
i ð1Þ

Here, I is a set that contains labels of all nodes adjacent (con-
nected) to node i, fir and Lir are the internal force and length of an ele-
ment with i and r as its start and end nodes, respectively. Also, px

i is
Fig. 1. Typical nodes (i; j) and element (k) of a tensegrity with external forces at
node i.
the external force at node i and in the x-direction. If we label each
element ij with a single number k (between 1 and m) then we can
write f x

ir based on element’s force density as follows:

f x
ij ¼

fijðxi � xjÞ
Lij

¼ fkðxi � xjÞ
Lk

¼ qkðxi � xjÞ ð2Þ

where qk ¼ fij=Lij ¼ fk=Lk is the force density of element k. A similar
equation can simply be written for the other end (node j) as given in
Eq. (3).

f x
ji ¼ qkðxj � xiÞ ð3Þ

A compact matrix form of Eqs. (2) and (3) is

f x
ij

f x
ji

" #
¼
�1
1

� �
qkdx

k ð4Þ

where dx
k ¼ xj � xi. In fact, by considering element k as a vector

directed from node i to j with length Lk, dx
k is the Cartesian compo-

nent (projection) of the length of this vector in the x-direction. It is
straightforward to write similar equations for all other elements
and in the y- and z-directions.

If we wish to consider force densities as primary variables, we
can use the above equations to write the equilibrium equations
for every node and every direction (for a 3-dimensional tensegrity
with n nodes and m elements) as the matrix equation,

Aq ¼
px

py

pz

2
64

3
75 ð5Þ

where q ¼ ½q1; q2; . . . ; qm�
t , px ¼ ½px

1; p
x
2; . . . ;px

m�
t , py ¼ ½p

y
1;p

y
2; . . . ;py

m�t ,
pz ¼ ½pz

1; p
z
2; . . . ;pz

m�
t and A 2 R3n�m is a rectangular matrix as follows:

A ¼
B diagðdxÞ
B diagðdyÞ
B diagðdzÞ

2
64

3
75 ð6Þ

In Eq. (6), dx ¼ ½dx
1; d

x
2; . . . ; dx

m�
t , dy ¼ ½dy

1; d
y
2; . . . ; dy

m�
t ,

dz ¼ ½dz
1; d

z
2; . . . ; dz

m�
t and B ¼ ½bij�n�m is defined as

bij ¼

�1 if i is the start node of element j

1 if i is the end node of element j

0 otherwise

8>>><
>>>:

ð7Þ

From a graph-theoretical point of view, B is the node-element
incidence matrix for a directed graph where each element is direc-
ted from node i to j (i < j). In addition, the rank of B is n� 1 (Kaveh,
2004), which means that its rows are linearly dependent.

Matrix A is defined by Pellegrino and Calladine (1986) as the
equilibrium matrix, although that term is also commonly used
for the equivalent matrix in which each column is divided by the
length of the corresponding member (see e.g., Pellegrino, 1993).

If we wish to consider the nodal positions as primary variables,
we can use the force density formulation (Schek, 1974). In general,
the equilibrium equations for a structure can be written as

Fint ¼ Pext ð8Þ

where Fint and Pext are internal and external nodal forces matrices in
the global coordinates system. For a 3-dimensional tensegrity with
n nodes and m elements, we define

Fint ¼ ½fx; fy; fz� ¼

f x
1 f y

1 f z
1

f x
2 f y

2 f z
2

..

. ..
. ..

.

f x
n f y

n f z
n

2
666664

3
777775 ð9Þ



K. Koohestani, S.D. Guest / International Journal of Solids and Structures 50 (2013) 2995–3007 2997
Pext ¼ ½px;py;pz� ¼

px
1 py

1 pz
1

px
2 py

2 pz
2

..

. ..
. ..

.

px
n py

n pz
n

2
666664

3
777775 ð10Þ

By substituting Eq. (1), and similar equations for y- and
z-directions, into Eq. (9), we can write the equilibrium equations as

SN ¼ Pext ð11Þ

where N ¼ ½x; y; z� is the matrix of nodal coordinates
(x ¼ ½x1; x2; . . . ; xn�t , y ¼ ½y1; y2; . . . ; yn�

t and z ¼ ½z1; z2; . . . ; zn�t), and
S is the force density matrix, also sometimes called the stress matrix
(see e.g., Connelly and Terrell, 1995 and Guest, 2006).

In this paper, however, we choose not to use nodal positions as
primary variables, but Cartesian components of element lengths.
By considering Eqs. (1) and (4) and combining them for all ele-
ments and in all directions, equilibrium equations are obtained
for entire structure as

BQD ¼ Pext ð12Þ

where Q ¼ diagðqÞ is the diagonal matrix of force densities, and
D 2 Rm�3 is the matrix of Cartesian components of element lengths,

D ¼ ½dx;dy;dz� ð13Þ

Eq. (12) described the equilibrium equations for a
3-dimensional tensegrity structure to which external forces have
been applied. However, we are interested here in the case the
structure has a state of self-stress with no external loads applied,
i.e.

BQD ¼ BQ ½dx;dy;dz� ¼ ½0;0;0� ð14Þ

Similarly, the right hand side of Eq. (5) will also be zero, i.e.
px ¼ py ¼ pz ¼ 0 and so Aq ¼ 0.

If the structure is 3-dimensional, dx;dy and dz must be three
independent vectors (see e.g., Connelly, 1982), and hence the
null-space of BQ must be at least 3-dimensional. However, this is
not a sufficient condition, as we do not have a free choice for
dx;dy and dz — these vectors must also be geometrically feasible.
The next section will consider the geometrical compatibility.
3. Geometrical compatibility equations

This section will consider the geometrical compatibility
relationships for tensegrity structures. Consider as an example a
simple 2-dimensional pin-jointed structure (see Fig. 2(a)), with
all its nodes and elements labelled. We consider each element as
a directed edge from a connectivity point of view, and as a vector
from a geometrical point of view. The connectivity model for the
structure is a simple directed graph in which each edge is directed
from node i to j (i < j). In a consistent geometry, the following
Fig. 2. (a) Graph model of a simple pin-jointed structure; (b) first cycle (elements 1
and 5 are positively directed and element 4 is negatively directed in this cycle); (c)
second cycle (elements 2 and 3 are positively directed and element 5 is negatively
directed in this cycle); (d) third cycle (elements 1, 2 and 3 are positively directed
and element 4 is negatively directed in this cycle).
equations must be valid for the structure in Fig. 2 irrespective of
the numerical values of nodal coordinates.

v1 þ v5 � v4 ¼ 0

v2 þ v3 � v5 ¼ 0

v1 þ v2 þ v3 � v4 ¼ 0

Here, vk is a vector associated with element k (with i and j as
start and end nodes), and it is defined as vk ¼ ½dx

k; d
y
k; d

z
k�

t ¼
½xj � xi; yj � yi; zj � zi�t . These equations are linearly dependent
and each one can be obtained by a linear combination of the others.
We select the first two equations and write these equations as

1 0 0 �1 1
0 1 1 0 �1

� �
dx

1 dy
1 dz

1

dx
2 dy

2 dz
2

dx
3 dy

3 dz
3

dx
4 dy

4 dz
4

dx
5 dz

5 dz
5

2
6666664

3
7777775
¼

0 0 0
0 0 0

� �
ð15Þ

The coefficient matrix in Eq. (15) has a special pattern from the
labelling of its elements. The matrix is called a cycle-member inci-
dence (cycle basis) matrix because each row corresponds to a cycle
in the underlying graph. The first and second rows correspond to
cycles c1 = {1,4,5} and c2 = {2,3,5}, respectively (see Fig. 2(b) and
(c)).

For a simple directed graph, the cycle-member incidence matrix
is usually denoted by C ¼ ½cij�b�m and is defined as follows:

cij ¼
�1 if j is in ci and negatively directed
1 if j is in ci and positively directed
0 otherwise

8><
>: ð16Þ

For a connected graph with m members and n nodes,
b ¼ m� nþ 1 is the dimension of the cycle space (the maximum
number of independent cycles) and is often referred to as the graph
cyclomatic number, nullity or first Betti number (see, e.g., Berge,
2001). The reader may refer to Micheletti (2008) for a recent
application of the cycle basis for generating reciprocal diagrams
for self-stressed frameworks. The cycle-member incidence matrix
is related to the node-member incidence matrix by the orthogonal-
ity relationship,

BCt ¼ 0n�b; CBt ¼ 0b�n ð17Þ

We use this feature of a cycle-member incidence matrix to
establish an interrelation between the current formulation and
the force density formulation. Considering the above definitions,
it is possible to define the geometrical compatibility equations of
a tensegrity structure in terms of Cartesian components of element
lengths as given in Eq. (18)

C½dx;dy;dz� ¼ CD ¼ ½0;0;0� ð18Þ
3.1. Automated generation of geometrical compatibility equations

According to Eq. (18), we only need to find the cycle basis of
a graph (the graph of a tensegrity) to write the geometrical
compatibility equations. The cycle basis of a graph is a very
well-covered subject in the field of combinatorial mathematics,
and various methods to form this basis have been proposed.
All types of cycle bases are valid for use within our formulation.
However, the minimal cycle basis is advantageous, as it enables
us to reduce the computational effort, and to find simpler
relationships between force densities during analytical form-
finding. In fact, a minimal cycle basis leads to a cycle-member
incidence matrix with a very sparse form. Analytical
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form-finding presented later requires a sparse cycle basis matrix
to provide a significant reduction in the total number of sym-
bolic operations and fill-ins, which leads to simpler entries in
the final factorised matrix. Note that for simple graphs it is
straightforward to generate a minimal cycle basis simply by
examining all the cycles, however, the reader may refer to De
Pina (1995), Horton (1987), Kavitha et al. (2008) and Mehlhorn
and Michail (2009), among others, for some efficient algorithms
for the generation of the minimal cycle basis.

The geometrical compatibility equations can also be generated
simply and numerically. To do so, we need to obtain a null-space
basis of B (the columns of Ct form a basis for the null space of B).
Both a triangular basis, usually formed by the Gauss–Jordan elim-
ination method, and an orthonormal basis, usually formed by sin-
gular value decomposition (SVD), are acceptable. Note that an
orthonormal basis is completely dense (all its entries are nonzero)
while a triangular basis can be moderately sparse. The sparsity of a
triangular basis can be improved by performing a special type of
Gauss elimination method; see Soyer and Topçu (2001) for more
detail.
4. Combined form of equations and self-stressed states

In the preceding sections, we have presented the equilibrium
equations (Eq. (14)) and geometrical compatibility equations (Eq.
(18)). The primary variables for both sets of equations are the
same; hence, the two sets of equations can be combined to obtain
a new set of equations, as follows:

HD ¼
C

BQ

� �
D ¼ ½0;0;0� ð19Þ

Here, H 2 Rmþ1�m (total number of rows is bþ n ¼ mþ 1). It is
clear that a non-trivial solution of Eq. (19) satisfies both equations
of equilibrium and of geometrical compatibility simultaneously. To
form a 3-dimensional tensegrity, the rank of H must be at most
m� 3, because of the necessity of finding three independent null
vectors.

It is interesting to compare the formulation given in Eq. (19)
with the conventional force density formulation (Eq. (11)). Clearly,
Eq. (19) can be transformed to Eq. (11) by noting that

BtN ¼ D ð20Þ

and CBt ¼ 0, showing that S ¼ BQBt . Thus, essentially our
formulation is an expanded form of the force density formula-
tion. In three dimensions, the force density method works with
3n nodal coordinates, while our formulation works with 3m
components of member lengths (where, typically, m > n). We lose
the square and symmetric nature of the matrix, but gain from the
potential for the sparse nature of H, particularly for analytical
form-findings.

The difference between our formulation and the force density
formulation is very similar to the difference between the force
and displacement methods for structural analysis. In the displace-
ment method, the equilibrium equations are written based on the
stiffness matrix and the nodal displacements, which automatically
satisfy compatibility conditions. In the standard force method,
both the equilibrium and the compatibility conditions are written
individually, based on elements’ independent forces, and should be
satisfied simultaneously. In fact, our formulation is analogous to
the integrated force method (IFM) that was developed by Patnaik
(1986). The reader can recognise the difference between the
compatibility of displacements (used in the standard and
integrated force methods) and the geometrical compatibility
conditions described here.
5. Form-finding

The requirements of our formulation can be considered as two-
fold: we require the force densities to form a state of self-stress, i.e.
satisfy Aq ¼ 0, and we require there to be, for a 3-dimensional
tensegrity, three independent solutions to HD ¼ 0 (or two inde-
pendent solutions in 2-dimensions). In fact, as the matrix H com-
bines equilibrium and compatibility conditions, the latter
requirement completely implies the former; however, in practice
it can be helpful to separately and explicitly consider the equilib-
rium condition.

5.1. Analytical method

In order to give an analytical formulation, in this paper we use
Gaussian elimination with a pivoting strategy to analytically con-
vert H to an upper triangular matrix. By ensuring that the final
rows of this upper triangular matrix are all zero, the relationships
required between the force densities in different members for
them to form a state of self-stress can be obtained. However, to
carry out these calculations, a computing platform with symbolic
computation capabilities, such as Maple or Matlab, is advantageous.
In order to reduce the total number of symbolic operations and to
keep the final matrix as simple as possible, two points should be
taken into consideration. First, the pivot entries should be kept
as simple as possible by performing suitable row permutations.
Second, in choosing between rows with simple and suitable pivot
entries, those with the least nonzero entries (sparser rows) are
more appropriate for use as a pivot row. Note that performing
simultaneous row and column permutations can further improve
the above process, however for the examples presented in Section
6, we only performed row permutations. For the analytical formu-
lation we do not separately consider the equilibrium matrix A.

5.2. Numerical method

We also consider a numerical and iterative form-finding meth-
od based on our formulation. The method requires the following
data for initialisation:

(a) Connectivity data. The matrices B and C can be generated
using connectivity data and the definitions and procedures
described so far.

(b) A random vector of force densities, denoted by q0. Note that
a suitable sign should be assigned to each entry according to
the type of the corresponding element (positive for tensile
members and negative for compressive elements).

After the above initialisation steps, we calculate an orthonormal
basis for the null space of C, denoted by Nc 2 Rm�n�1, as a general
solution for compatibility equations. As a result, every geometri-
cally compatible solution, including a solution (if one exists) that
satisfies equilibrium can be formed by linear combination of col-
umns of Nc . Therefore, D is considered as

D ¼ NcT ð21Þ

where T 2 Rn�1�3 is a rectangular matrix that contains coefficients
of the linear combination of columns. As a particular solution, D
should also satisfy equilibrium equations (Eq. (14)), and we obtain

GT ¼ ½0;0;0� ð22Þ

where G 2 Rn�n�1 and G ¼ BQNc .
For a set of force densities that form a state of self-stress, T can

simply be calculated as null-space basis of G. However, if we only
have an approximate set of force densities, denoted by Q i in itera-
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tion i, we can calculate an approximation of Ti by minimising the 2-
norm of the residual force matrix as follows:

Minimise
T

GiTi
��� ���

2
ð23Þ

In order to determine a Ti that satisfies Eq. (23), we use the SVD
of Gi ¼ BQ iNc

Gi ¼ UGVGWt
G

� �i ð24Þ

Based on this decomposition, the best approximation of Ti is ob-
tained using the vectors of ðWGÞi associated with the three smallest
singular values of Gi (the last three diagonal entries of ðVGÞi), lead-
ing to better approximations of the element projection lengths,
Diþ1. The new values of diþ1

x ;diþ1
y and diþ1

z are then employed in
Eq. (6) to calculate the coefficient matrix of equilibrium equations
(Aiþ1). In a self-stress state, A has at least one zero singular value,
and by using a similar approach to the one described above, we
can find a new approximation of force densities that form a state
of self-stress qiþ1. We need to find a new set of force densities in
a way that satisfies the minimisation problem

Minimise
q

Aiþ1qiþ1
��� ���

2
ð25Þ

Subject to : sgn qiþ1� �
¼ sgn q0� �

where ‘sgn’ denotes sign function. In order to solve the above minimi-
sation problem, the SVD of Aiþ1 is calculated as Aiþ1 ¼ ðUAVAWt

AÞ
iþ1,

and the last column of ðWAÞiþ1 corresponding to the smallest singular
value is selected as the new vector of force densities. Element types
are imposed a priori, meaning that the sign of the force density vector
obtained from the SVD of Aiþ1 should be the same as q0 in all itera-
tions (see the constraint defined in Eq. (25)). Although note that the
overall sign is not important at this stage, and is indeed arbitrary in
the SVD. However, to ensure that the sign of an iterative set of force
densities conforms to q0, we adopt Estrada et al.’s (2006) approach,
which employs linear combinations of the other columns of WA with-
in a least square approximation to find a vector whose sign matches
with the initial set of force densities.

The above steps can be employed iteratively to minimise the
residual forces as much as is required. Iterations cease when the
stopping criterion, as defined in Eq. (26), is satisfied.

t ¼ maxðt1; t2Þ 6 e ð26Þ

Here, t1 is the maximum value of the three smallest singular
values of Gi and t2 is the smallest singular value of Aiþ1. The user
sets e as a very small number according to the desired level of
accuracy.

After convergence, the nodal coordinates of tensegrity should
be calculated using Eq. (20). Different methods can be used to solve
Eq. (20); we offer a solution based on the Moore–Penrose pseudo-
inverse (see Golub and Van Loan, 1996 for more detail) of Bt as
follows:

N ¼ ½x; y; z� ¼ Bt� �þ
D ð27Þ

Here, the superscript + on Bt refers to the Moore–Penrose pseu-
do-inverse operator. This method promises to find a solution of Eq.
(20) in such a way that the norms of vectors x; y and z are smaller
than the norms of any other possible solution.

Note that, as the SVD is employed throughout of the iterations,
we always obtain an orthogonal matrix of Cartesian components of
element lengths as follows:

DtD ¼
dt

xdx dt
xdy dt

xdz

dt
ydx dt

ydy dt
ydz

dt
zdx dt

zdy dt
zdz

2
664

3
775 ¼

1 0 0
0 1 0
0 0 1

2
64

3
75 ð28Þ
Considering the trace of the above matrix, this orthogonality
leads to a special constraint on the final geometry of a 3-dimen-
sional tensegrity, concerning the length of elements, as follows:

Xm

i¼1

L2
i ¼ 3 ð29Þ

The above features lead to a tensegrity structure geometry
without any dilation, shear or translation. In the following, the pro-
cess of our numerical form-finding method is presented in a step-
by-step algorithmic form.

Algorithm

Step 1. Define connectivity data and a random set of force densi-
ties (q0).

Step 2. Form B and C and calculate Nc (also E, see 5.3). Set i ¼ 0.
Step 3. Calculate the SVD of Gi ¼ BQ iNc and select Ti.
Step 4. Calculate Diþ1 ¼ NcTi.
Step 5. Calculate the SVD of Aiþ1 (or Aiþ1

E ) and select qiþ1 (see 5.3
for more details).

Step 6. If t 6 e stop; else i ¼ iþ 1 and continue from step 3.

5.3. Symmetry and grouping of elements

It may be required that the found form for a tensegrity has cer-
tain symmetry. According to the required symmetry, elements can
be grouped, and one force density associated with all elements of
each group. As a result, grouping reduces the total number of vari-
ables in the analytical form-finding—note that grouping can be con-
sidered independent of the symmetry of a tensegrity. The reader
may refer to Murakami and Nishimura (2001), Sultan et al. (2001),
Tibert and Pellegrino (2003), Zhang et al. (2009a,b) and Zhang
et al. (2010), for some examples of exploiting symmetry and group-
ing in the analytical form-finding and characterisation of tensegrity
structures. In numerical form-finding, grouping can also be consid-
ered for symmetric tensegrities. A problem in numerical form-find-
ing methods relating to grouping arises from the different
approximations used to iteratively calculate the vector of force den-
sities. In our method, step 5 is sensitive to grouping. An approxi-
mated vector of force densities (the last column of ðWAÞiþ1) does
not necessarily follow the initial grouping scheme. An efficient ap-
proach is proposed here to address this problem. The method is
completely general and can be used as part of any numerical
form-finding method that uses similar approximation steps.

Let all elements of a tensegrity be packed into k groups, denoted
by g1; g2; . . . ; gk, where each group is a set that contains labels of all
elements with the same force density. For a typical group gj, jgjj � 1
independent equations (j � jmeans cardinality of a set) can be asso-
ciated based on equality relationships between the force densities
of elements. For example, let l and p be in a group. The equality
ql ¼ qp leads to the equation ðet

l � et
pÞq ¼ 0 where el and ep are m-

dimensional base vectors. Considering all groups,
Pk

j¼1jgjj
� �

� k

independent equations can be generated in matrix form as follows:

Eq ¼ 0 ð30Þ

Eq. (30) can be combined by the equilibrium equations, Aq ¼ 0,
leading to an augmented form of the equilibrium equations as gi-
ven in Eq. (31).

AEq ¼
A
E

� �
q ¼ 0 ð31Þ

For symmetric tensegrities including an initial grouping, the
SVD of AE should be calculated instead of that of A. In the early
stages of the form-finding process, the approximate solution of



Fig. 3. Graph model of a 2-dimensional tensegrity.
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Eq. (31) again leads to Eq � 0, but with less diversity. We require a
final step to completely remove any inconsistency in the force
density vector. To do so, qiþ1 is created such that the mean force
density of all elements in each group is selected as the force den-
sity associated with the elements of that group. After the final
adjustment, it is clear that the vector of force densities follows
the initial grouping scheme.

5.4. Convergence

In numerical analysis, an iterative method is called globally
convergent if the successive approximations generated by the
method converge to a feasible solution (or the same solution for
the problems with a unique solution) starting from arbitrary initial
approximations. However, in practice, most iterative methods are
locally convergent and should be provided with reasonably good
initial approximations to converge to a solution. Our study shows
that the numerical form-finding method proposed in this paper
has been found to converge to a solution for all sets of random
force densities tried, although some solutions may not be feasible.
From this numerical experiment point of view, our method is
locally convergent. The unfeasible solutions typically arise, for
instance, if an initial random set of force densities, q0, leads to a
geometry including one or more elements with zero (or very small)
lengths or force densities. We can identify this condition by using
Lmax=Lmin as an indicator, where Lmax and Lmin are the maximum and
minimum lengths of elements, respectively. Note that the length of
each element can be calculated in step 4 of the algorithm after the

calculation of Diþ1 by using Lj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2

j þ dy2
j þ dz2

j

q
, j ¼ 1;2; . . . ;m. A

very large value for the above fraction (e.g., 20 or more) may be a
good indicator of an improper q0. The same restriction may also be
applied to max jqj=min jqj. Overall, our study reveals that, although
the convergence (and its rate) of the proposed method is generally
dependent on two different variables (i.e. the topology of tenseg-
rity and the initial random set of force densities), it still converges
satisfactorily in practice for a wide variety of random
initialisations.

6. Examples

In this section, five examples of well-known tensegrities and an
example of a new tensegrity are provided. Their self-stress states
and found forms are studied through our analytical and numerical
approaches. The first two examples use the analytical approach
and include details about cycle bases and their connections to
our formulation. The third example is studied both numerically
and analytically. For the sake of brevity, details about cycle bases
are not provided for the last four examples. In all examples, we
assume that the symmetry properties of a tensegrity (in a geomet-
rical manner) cannot be exploited or unknown. However, element
grouping is available throughout. In all numerical procedures, the
convergence criterion e is set to 1� 10�15.

6.1. Example 1

In this example, the self-equilibrium state of a 2-dimensional
tensegrity is studied using the analytical method proposed
(restriction of the formulations to 2-dimensional tensegrities is
straightforward). Fig. 3 shows a graph model of the tensegrity with
its elements labelled. This graph has n ¼ 6 nodes and m ¼ 9
elements. We consider four groups of elements, two sets of cables
g1 ¼ f1;3;4;6g, g2 ¼ f2;5g and two sets of struts g3 ¼ f7;8g and
g4 ¼ f9g. Furthermore, q1; q2; q3 and q4 are associated with these
groups as their respective force densities. The cyclomatic number
of this graph is 4. Therefore, four independent cycles,
c1 ¼ f1þ;6�;7þg, c2 ¼ f1þ;2þ;3þ;9�g , c3 ¼ f3þ;4þ;8�g and
c4 ¼ f4þ;5þ;6�;9þg form its cycle basis. The set of cycles is mini-
mal as it is not possible to find another set of cycles with a smaller
number of elements. In addition, the sign attached to each number
refers to the right sign of the corresponding nonzero entry in the
cycle-member incidence matrix C. We generate the combined form
of the equilibrium and geometrical compatibility equations (H)
and apply the analytic procedure described in Section 5.1 to create
an upper triangular matrix, denoted by H0, as follows:

H0 ¼

1 0 0 0 0 �1 1 0 0
0 1 1 0 0 1 �1 0 �1
0 0 1 1 0 0 0 �1 0
0 0 0 1 1 �1 0 0 1
0 0 0 0 q2 q1 q3 0 0
0 0 0 0 0 �2q1 q1 0 �q4

0 0 0 0 0 0 a q2 0
0 0 0 0 0 0 0 b c
0 0 0 0 0 0 0 0 �2c
0 0 0 0 0 0 0 0 0

2
6666666666666666664

3
7777777777777777775

Here, a ¼ �ðq1 þ q2 þ 2q3Þ, b ¼ ðq1þ2q3Þðq1þ2q2þ2q3Þ
�2a and

c ¼ � 2q1q2þq1q4þ2q2q4
2q2

.

Matrix H0 has 9 columns and 10 rows, and hence for any set of
parameters, all entries of the last row of H0 must be zero. To give
two independent solutions for dx and dy (as we are considering a
2-dimensional tensegrity) the rank of H should be 9� 2 ¼ 7. This
rank can be achieved if both b and c are zero. From c ¼ 0 we obtain
q4 ¼ �2q1q2=ðq1 þ 2q2Þ, while for b ¼ 0 there are two possible
cases: q3 ¼ �q1=2 or q3 ¼ �ðq1 þ 2q2Þ=2. The first case corresponds
to a super-stable configuration (see Connelly and Terrell, 1995 and
Zhang and Ohsaki, 2007 for more detail about super-stability con-
ditions) while the second one does not. In fact the second case is
neither super-stable nor stable because its linear elastic stiffness
matrix is not positive definite (excluding rigid body motions). Note
that, tensegrities without super stability may still be stable — for
these cases, however, the stability can be investigated based on
prestress/stiffness ratio of elements and spectral characteristics
of the tangent stiffness matrix (sum of the linear elastic stiffness
and geometrical stiffness matrices). The reader may refer to Ohsaki
and Zhang (2006) for the necessary and sufficient conditions for
the stability of pin-jointed structures including tensegrities.

The second equation for q3 sets four diagonal entries of the force
density matrix equal to �q2 , a negative value, and annihilates the
positive semi-definiteness of the force density matrix. To verify the
formulation and the results, eigenvalues of the force density matrix
are calculated symbolically using the above relationships between
the force densities. For the first case, three zero-valued eigenvalues
are obtained. The other three eigenvalues are 3q1, 2q2 and
ð3q2

1 þ 4q1q2 þ 4q2
2Þ=ðq1 þ 2q2Þ, all of which are strictly positive

(q1 and q2 are the force densities of cables and are therefore



Fig. 4. Self-equilibrated configurations of a 2-dimensional tensegrity;
(a) super-stable, (b) unstable.

Fig. 5. Graph model of a truncated tetrahedral tensegrity.
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positive). Hence, the force density matrix is semi-positive definite
and the corresponding configuration is super-stable. For the sec-
ond case, we also obtain three zero-valued eigenvalues. However,
the first eigenvalue is �2q2, which is clearly negative and leads
to a configuration without super-stability. The other two eigen-
values are the same as those in the first case and are positive. As
a result, our approach leads to results that are in complete agree-
ment with those of the classic force density method.

At this stage, we select q1 ¼ 2, q2 ¼ 1 and q3 ¼ q4 ¼ �1 as the
first typical case and q1 ¼ 2, q2 ¼ 1, q3 ¼ �2 and q4 ¼ �1 as the
second typical case (both satisfying self-stress conditions) and cal-
culate the nodal coordinates of tensegrity via Eq. (27). The config-
urations are shown in Fig. 4, where compressive elements are
depicted in thick lines. Both configurations are symmetric without
any dilation, shear or translation and all elements in each group
have the same length.

6.2. Example 2

In this example, the analytical form-finding of a truncated tetra-
hedral tensegrity is studied. Fig. 5 shows a graph model of the
tensegrity with node and element labelling. This graph has
n ¼ 12 nodes and m ¼ 24 edges and its cyclomatic number is 13.
The minimal cycle basis of this graph is formed using four 3-sided
and nine 4-sided cycles, as summarised in Table 1. The proposed
analytical process is applied to the combined form of the geomet-
rical compatibility and equilibrium equations, leading to an upper
triangular symbolic matrix (H0).

It is possible to find three independent solutions for dx, dy and
dz if the rank of H0 is at most 21. Therefore, the 22nd–24th rows
of H0 should be zero. The simplified non-zero entries (numerators)
found are

H0ð22;22Þ ¼ 2xq1 �2q3
2 � 3q1q2

2 þ 4q2q2
3 þ 3q1q2q3 þ 3q1q2

3

� �
H0ð22;23Þ ¼ x 9q2

1q2
2 þ 3q2

1q2q3 � 3q2
1q3 þ 14q1q3

2 þ 12q1q2
2q3

�
�4q1q2q2

3 þ 4q4
2 þ 8q3

2q3

�

H0ð22;24Þ ¼ x 3q2
1q2

2 � 3q2
1q2q3 þ 3q2

1q2
3 þ 6q1q3

2 þ 4q4
2

� �
H0ð23;23Þ ¼ xðq2Þ

H0ð23;24Þ ¼ xð2q3 � q2Þ

H0ð24;24Þ ¼ x

where
x ¼ 3q2

1q2 þ 3q2
1q3 þ 2q1q2

2 þ 6q1q2q3 þ 2q1q2
3 þ 2q2

2q3 þ 2q2q2
3. All

entries have a common sub-expression (x), and x ¼ 0 provides
us with the rank deficiency required. The same equation has been
provided in Zhang and Ohsaki (2012) for the self-stress state, veri-
fying our results. The above equation can be simplified by setting
q2 ¼ kq1 and q3 ¼ rq1, as follows:

x ¼ 2ð1þ kÞr2 þ ð2kð3þ kÞ þ 3Þrþ kð3þ 2kÞ ¼ 0

This gives another form of the self-stress condition for a trun-
cated tetrahedral tensegrity, as described by Tibert and Pellegrino
(2003). Note that, even though the force density matrix is symmet-
ric and far smaller than our matrix, the analytical calculation of its
eigenvalues (without exploiting symmetry) is impossible as a con-
sequence of the Abel–Ruffini theorem (see Pesic, 2003) that there is
no general algebraic solution to a polynomial equation of degree 5
or higher, while its factorisation using a Gauss elimination method
leads to a matrix with highly complicated entries.

Using the equations provided, we consider two sets of typical
force densities, q1 ¼ q2 ¼ 1, q3 ¼ ð�11�

ffiffiffiffiffiffi
41
p
Þ=8, and calculate

the corresponding nodal coordinates. In the self-stressed state, all
nodes of tensegrities are located on spheres (whose centres are
the origin of the coordinate system) with radii of 0.2970 and
0.1998 for cases (a) and (b), respectively. Fig. 6 illustrates the
two configurations mentioned above, where the first case is
super-stable.

6.3. Example 3

This example has been selected from Tran and Lee (2010a). The
original problem is the form-finding of a cable-strut structure with
some fixed nodes. Dummy members have been added to the struc-
ture to convert it to an equivalent model without fixed nodes
(external continuous compressive elements in Fig. 7). We adopt
the same labelling of elements, nodes and element groupings as
in the above reference.

Note that all elements are grouped into four sets, including two
groups of tensile elements (10 elements in each group) and two
groups of compressive elements (5 elements in each group). In



Table 1
Set of the minimal cycle basis for a truncated tetrahedral tensegrity.

Cycle name c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Element number 1+ 4+ 7+ 10+ 3+ 5+ 1+ 4+ 13+ 19+ 23+ 2+ 15+

2+ 5+ 8+ 11+ 17+ 18+ 22+ 14+ 21+ 18+ 14� 19+ 12+

3� 6� 9� 12� 9� 11� 10+ 7+ 15+ 20� 24+ 6� 20�

23� 24� 16� 21� 22� 17� 16� 13� 8�

Fig. 6. Self-equilibrated configurations of a truncated tetrahedral tensegrity (a) q3 ¼ ð�11þ
ffiffiffiffiffiffi
41
p
Þ=8; (b) q3 ¼ ð�11�

ffiffiffiffiffiffi
41
p
Þ=8.
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addition, q1 and q2 are considered the force densities of elements in
the tensile groups (the first and second groups), while q3 and q4 are
considered the force densities of elements in the compressive
groups (the third and fourth groups). Force densities of typical ele-
ments are shown in Fig. 7, where different colours illustrate ele-
ments of different groups.

Our numerical form-finding method successfully generates two
different forms. Both configurations are illustrated in Fig. 7. For this
example, the numerical procedure proposed by Tran and Lee
(2010a) gave a self-stressed configuration without super-stability.
Table 2 provides more details about our form-finding procedure,
where force densities are ordered from q1 to q4 . Both cases con-
verged in just two iterations, demonstrating the efficiency of our
Fig. 7. Top and perspective views of two self-equilibrated configurations for
Example 3 (a) super-stable (b) not super-stable.
proposed method (this rate is constant for every initial set of force
densities).

We also analytically investigate the conditions for a valid form
in this example using our formulation. The rank deficiency of the
combined form of the equilibrium and geometrical compatibility
conditions provides two different equations: q1 þ 2q3 ¼ 0 and
4q2

1q2
2 þ 4q2

1q2q4 þ q2
1q2

4 þ 10q1q2
2q4 þ 5q1q2q2

4 þ 5q2
2q2

4 ¼ 0. The sec-
ond equation can be rewritten in a simpler form using new vari-
ables: q2 ¼ aq1 (a is positive) and q4 ¼ bq1 (b is negative). The
equation is then rewritten as follows:

ð4þ 10bþ 5b2Þa2 þ ð4bþ 5b2Þaþ b2 ¼ 0

This equation has two roots:

a ¼ �4bþ ð5�
ffiffiffi
5
p
Þb2

8þ 20bþ 10b2

Only positive roots are acceptable. Our numerical results are in
complete agreement with the established analytical equations,
verifying the accuracy of the results.
6.4. Example 4

In this example, the numerical form-finding of a well-known
tensegrity, based on a truncated icosahedron, is studied using the
proposed method. This tensegrity has n ¼ 60 nodes and m ¼ 120
elements. The reader may refer to Murakami and Nishimura
(2001) for more detail on the connectivity and symmetry proper-
ties of this tensegrity. The cyclomatic number for a graph of this
tensegrity is 61, meaning that 61 geometrical compatibility equa-
tions (or independent cycles) should be generated for this model.
For this example, we numerically generate the coefficient matrix
of the geometrical compatibility equations (C) by calculating a tri-
angular null-space basis of the node-member incidence matrix.
Three cases are studied using our numerical method; the first case
converges to a super-stable configuration, while the others only
satisfy the self-equilibrium condition. The detailed results of the
numerical procedure are summarised in Table 3.



Table 2
Detailed results of the numerical form-finding method for Example 3.

Initial random force densities Final normalised force densities Total number of iterations and t

Case 1 (super stable) 0.6110
0.7788
�0.4235
�0.0908

0.2091
0.2160
�0.1045
�0.0912

2, 3.3074 � 10�16

Case 2 0.6619
0.7703
�0.3502
�0.6620

0.1793
0.2243
�0.0896
�0.1644

2, 3.4619 � 10�16

Table 3
Detailed results of the numerical form-finding method for Example 4.

Initial random force densities Final normalised force densities Total number of iterations and t

Case 1 (super stable) 0.8055
0.5767
�0.1829

0.1137
0.0780
�0.0375

67, 6.2985 � 10�16

Case 2 0.7127
0.5005
�0.4711

0.1077
0.0826
�0.0575

9, 9.4048 � 10�16

Case 3 0.0714
0.5216
�0.0967

0.0245
0.1766
�0.0307

7, 5.3331 � 10�16
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We confirm all our results with the analytical self-stress condi-
tions recently derived by Zhang et al. (2012) for truncated icosahe-
dral tensegrities, as follows:

q2
s qb þ qsq

2
b þ

5�
ffiffiffi
5
p

5
q2

s þ q2
b

� �
þ 3ð5�

ffiffiffi
5
p
Þ

5
qsqb þ

3�
ffiffiffi
5
p

2
ðqs þ qbÞ ¼ 0

q2
s qb þ qsq

2
b þ

5þ
ffiffiffi
5
p

5
q2

s þ q2
b

� �
þ 3ð5þ

ffiffiffi
5
p
Þ

5
qsqb þ

3þ
ffiffiffi
5
p

2
ðqs þ qbÞ ¼ 0
Fig. 8. Self-equilibrated configurations of a truncated icosahedral tensegrity (a) c
Note that qs and qb are force densities of cables and struts that
have been normalised based on the force density of cables on trun-
cated edges, i.e. qs ¼ q2=q1 and qb ¼ q3=q1. The force densities
obtained for the first case (super-stable) are in complete agree-
ment with the first equation above (see also Koohestani, 2012;
Murakami and Nishimura, 2001; Zhang et al., 2013), while the
other two cases exactly satisfy the second equation. This verifies
the accuracy of our method.

Fig. 8 illustrates the final geometries of the tensegrity in the
three cases examined. All nodes of the tensegrity are located on
ase 1, super-stable; (b) case 2, not super-stable; (c) case 3, not super-stable.



Fig. 9. Comparison of the convergence history of the our numerical method with
those of the other methods for truncated icosahedral tensegrity. Fig. 11. Comparison of the convergence history of the our numerical method with

those of the other methods for the ‘‘expanded octahedron’’ tensegrity.
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spheres with centres at the origin of the coordinate system and
radii of 0.2190, 0.1286 and 0.1107 for cases 1, 2 and 3, respectively.
Our method directly generates geometries without any dilation,
shear or translation, and where all elements in each group have
the same length. Furthermore, the performance of the present
method in terms of convergence is studied in this example. To do
so, we perform 20 runs of our numerical form-finding method
for both cases (with and without super-stability) with different
random sets of force densities.

Fig. 9 illustrates a comparison of the convergence history of the
proposed method (average of 20 runs) and those of Tran and Lee
(2010b) and Estrada et al. (2006). The comparison clearly verifies
the efficiency of the proposed method.
Fig. 10. A super-stable (a) expanded and (b) mo

Table 4
Detailed results of the numerical form-finding method for Example 5.

Initial random force densities F

Case 1 (super stable) 0.2208
0.4536
�0.4653

0
0
�

Case 2 (super stable) 0.4061
0.6580
0.5752
0.9760
�0.4416
�0.7778
�0.5695

0
0
0
0
�
�
�

6.5. Example 5

The numerical form-finding of the ‘‘expanded octahedron’’
tensegrity is studied in this example. This tensegrity has n ¼ 12
nodes and m ¼ 30 elements. The coefficient matrix of the geomet-
rical compatibility equations is calculated numerically. We choose
only two variables by considering the force density of all the cables
(q1) as one variable and that of all the struts (q2) as the other. For
this initialisation, our method generates a super-stable configura-
tion (see Fig. 10(a)) with a constant q1=q2 ratio of �2/3. The results
given for this structure are in a complete agreement with those of
Tibert and Pellegrino (2003). The convergence history of our
numerical method is provided in Fig. 11.
dified ‘‘expanded octahedron’’ tensegrities.

inal normalised force densities Total number of iterations and t

.1129

.2748
0.2004

2, 4.0361 � 10�16

.1030

.1723

.1404

.1777
0.2147
0.2659
0.2200

2, 3.7118 � 10�16



Fig. 12. Möbius–Kantor graph with labelling.
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We slightly change this example in order to demonstrate the
capability of our built-in grouping and numerical approach to deal
with tensegrities having multiple states of self-stress. To do so, 6
members (connecting end of parallel compressive elements) have
been added to the original model of the ‘‘expanded octahedron’’.
This tensegrity has been studied by Tran and Lee (2011) for a case
of multiple states of self-stress (the structure has six states of self
stress). We study this example through our numerical approach
and also note that, we adopt the same labelling of nodes and ele-
ments as the above reference. Two cases have been considered
based on two different groupings of elements. In the first case,
all elements are grouped into three sets, including two groups of
cables g1 ¼ f1;2; . . . ;24g and g2 ¼ f25;26; . . . ;30g and, a group of
struts g3 ¼ f31;32; . . . ;36g as in Tran and Lee (2011).
Fig. 13. Two new super-stable ten

Table 5
Detailed results of the numerical form-finding method for Example 6.

Initial random force densities F

Case 1 (super stable) �0.0900
0.1117
0.6787
0.1363
0.4952

�
0
0
0
0

Case 2 (super stable) �0.2967
0.3188
0.4242

�
0
0

Furthermore, in order to show the viability of our method, we
consider a more complex grouping of elements. In this case, all ele-
ments are packed into seven groups with the corresponding force
densities q1 � q7. These groups are g1 ¼ f1;2;7;8;13;15;18;20g,
g2 ¼ f3;4;5;6;21;22;23;24g , g3 ¼ f9;10;11;12;14;16;17;19g
and g4 ¼ f25;26;27;28;29;30g for cables and g5 ¼ f31;32g,
g6 ¼ f33;36g and g7 ¼ f34;35g for struts. Our numerical form-
finding method with its built-in grouping scheme directly gener-
ates feasible sets of force densities for both cases (both are
super-stable) in just 2 iterations. This can be compared with the
18 iterations required by the two-stage algorithm of Tran and
Lee (2011) for the first case. Table 4 provides more details about
the form-finding process. The equilibrium configuration of the first
case is also illustrated in Fig. 10(b).
6.6. Example 6

All the examples presented so far are known tensegrities that
have been studied in the literature. In this example we try to dem-
onstrate the capacity of the proposed methods for form-finding
and exploring new tensegrities. Fig. 12 shows a well-known graph
(called the generalised Peterson graph Gð8;3Þ or Möbius–Kantor
graph (Coxeter, 1950), with n ¼ 16 nodes, m ¼ 24 edges and
b ¼ 9 independent cycles. We select this graph as the topology of
a tensegrity and consider two cases based on different groupings
of edges. In the first case, we consider five groups of elements,
one set of struts g1 ¼ f1;3;5;7g and four sets of cables
g2 ¼ f2;4;6;8g, g3 ¼ f9;11;13;15g, g4 ¼ f10;12;14;16g and
g5 ¼ f17;18; . . . ;24g. In the second case, three groups of elements,
one set of struts g1 ¼ f1;3;5;7g and two sets of cables
g2 ¼ f2;4;6;8;9;11;13;15g and g3 ¼ f10;12;14;16;17; . . . ;24g
are considered. Furthermore, qi is associated with gi as its respec-
tive force density. Note that, this type of grouping leaves eight
nodes of the tensegrity without any compressive element which
segrities (a) case 1, (b) case 2.

inal normalised force densities Total number of iterations and t

0.0449
.0089
.3300
.0686
.2591

65, 7.7232 � 10�16

0.0877
.1316
.2631

151, 8.5503 � 10�16
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makes it rather different from classical tensegrities. We found two
super-stable configurations for both cases, as shown in Fig. 13.

Table 5 also provides the detailed results of the form-finding for
both cases, each for two random sets of force densities. Further-
more, by examining the numerical results, we found that in the
second case, three force densities are related to each other through
very simple relationships q1 ¼ �q3=3 and q2 ¼ q3=2 . These rela-
tionships have also been verified through the analytical approach
presented.
7. Discussions and conclusions

In this section, we discuss the advantages and disadvantages of
our method in comparison with other available methods and for-
mulations. We have introduced a combined formulation of the
equilibrium and geometrical compatibility equations, which offers
a new insight into the form-finding of tensegrity structures. The
proposed formulation is, in fact, the natural counterpart of the
force density method, but with different structure and variables.
Our analytical results are in complete agreement with those of Ti-
bert and Pellegrino (2003), Zhang et al. (2012) and Zhang and
Ohsaki (2012). Clearly, the new structure of the combined formu-
lation enables us to find reasonable analytical solutions for moder-
ately large and irregular models. This advantage, for instance, is
shown in examples 6.2 and 6.3 where fairly simple analytical rela-
tionships have been obtained for the tensegrities. For these exam-
ples, analytical computation using the force density matrix is far
more difficult. Our numerical approach iteratively employs the
SVD of two different forms of equilibrium equations to find a state
of self-stress. This part of our numerical method is related to the
methods developed by Estrada et al. (2006) and Tran and Lee
(2010a,b), but it is different from the adaptive force density meth-
od of Zhang and Ohsaki (2006). In general, the numerical approach
presented in this paper has several distinct advantages in compar-
ison with those studies mentioned above including:

(a) It starts from a random set of force densities (instead of
using a constant prototype vector containing only +1 and
�1). This enables us to form and explore a wide variety of
tensegrities with or without super-stability and with differ-
ent levels of energies. This feature may also be very impor-
tant for the design and optimisation of tensegrities with
different constraints.

(b) Our experiments show that the method presented is accu-
rate, and it has good convergence performance (i.e. it con-
verges faster than similar methods such as Estrada et al.,
2006; Tran and Lee, 2010b, 2011)

(c) The combined form of the equilibrium and compatibility
equations with Cartesian components of element lengths
as primary variables enable us to directly form a symmetric
geometry for a symmetric tensegrity. All the numerical
methods mentioned above usually require secondary com-
putations to form a symmetric tensegrity even from a sym-
metric set of force densities.

(d) The method is enriched with a special grouping scheme,
which allows us to directly apply the symmetry properties
of tensegrities to the form-finding process. Therefore, as
demonstrated in example 5, our method can effectively
and efficiently generate a single (integral) feasible set of
force densities for different groupings.

Our method has two weak points. First, the method does not
have a built-in strategy to guide the solution towards super-stable
(or at least stable) configurations (or tensegrities with different
levels of energy). In other words, by starting from a random set
of force densities, the method converges to a super-stable or not
super-stable form randomly. Second, the method may converge
to a solution which is not feasible (the force density or the length
of some of elements is zero). The conditions which lead to such a
situation have been discussed in Section 5.4. However, we believe
that this weakness is not significant, and it can be easily resolved
by setting a new starting point (new set of random force densities).

In general, this study reveals that our formulation and its asso-
ciated analytical and numerical methods provide an appealing
platform for the study of tensegrity structures. However, investi-
gating the super-stability conditions via the combined formulation,
evaluating the performance of the numerical method for the form-
finding of irregular tensegrities and the form-finding and optimisa-
tion of tensegrities under different constraints may be important
enough to call for new studies.
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